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Multicomplexes — Definition

A multicomplex (M,D•) (over a field K) consists of
• A bigraded K-vector space M = {Mp,q|p, q ∈ Z},

• and linear maps D0,D1,D2,D3, . . . where
Dr : Mp,q → Mp+r,q−r+1 for all indices (p, q).

In addition, we require

D0Dn + D1Dn−1 + · · ·+ Dn−1D1 + DnD0 = 0

for all n ⩾ 0.

More compactly, ∑
p+q=n

DpDq = 0.
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Visualising multicomplexes

...
...

...

· · · Mp−1,q+1 Mp,q+1 Mp+1,q+1 · · ·

· · · Mp−1,q Mp,q Mp+1,q · · ·

· · · Mp−1,q−1 Mp,q−1 Mp+1,q−1 · · ·

...
...

...
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Visualising multicomplexes: D0

...
...

...

· · · • • • · · ·

· · · • • • · · ·

· · · • • • · · ·

...
...

...

D0
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Visualising multicomplexes: D1

...
...

...

· · · • • • · · ·

· · · • • • · · ·

· · · • • • · · ·

...
...

...

D1
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Visualising multicomplexes: D2

...
...

...

· · · • • • · · ·

· · · • • • · · ·

· · · • • • · · ·

...
...

...

D2
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Defining relations

∑
p+q=n

DpDq = 0.

n=0

D0D0 = 0

•

•

•

D0

D0

n=1

D1D0 = −D0D1

• •

• •

D1

D1

D0 D0

n=2

D1D1 = −(D0D2+D2D0)

•

• • •

•

D2

D1

D0

D2

D1

D0



Slide: 7

Defining relations

∑
p+q=n

DpDq = 0.

n=0

D0D0 = 0

•

•

•

D0

D0

n=1

D1D0 = −D0D1

• •

• •

D1

D1

D0 D0

n=2

D1D1 = −(D0D2+D2D0)

•

• • •

•

D2

D1

D0

D2

D1

D0



Slide: 7

Defining relations

∑
p+q=n

DpDq = 0.

n=0

D0D0 = 0

•

•

•

D0

D0

n=1

D1D0 = −D0D1

• •

• •

D1

D1

D0 D0

n=2

D1D1 = −(D0D2+D2D0)

•

• • •

•

D2

D1

D0

D2

D1

D0



Slide: 7

Defining relations

∑
p+q=n

DpDq = 0.

n=0

D0D0 = 0

•

•

•

D0

D0

n=1

D1D0 = −D0D1

• •

• •

D1

D1

D0 D0

n=2

D1D1 = −(D0D2+D2D0)

•

• • •

•

D2

D1

D0

D2

D1

D0



Slide: 8

Example: Chain complex of (graded) vector spaces

...
...

...

· · · • • • · · ·

· · · • • • · · ·

· · · • • • · · ·

...
...

...

D0

D0

D1 = D2 = . . . = 0

=⇒ D0D0 = 0
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Example: Double complex

...
...

...

· · · • • • · · ·

· · · • • • · · ·

· · · • • • · · ·

...
...

...

D1

D0

D1

D0

D2 = D3 = . . . = 0

=⇒ D0D0 = 0 D1D1 = 0 D0D1 + D1D0 = 0
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Example: "Homotopy double complex"
...

...
...

...

. . . • • • • . . .

. . . • • • • . . .

. . . • • • • . . .

. . . • • • • . . .

...
...

...
...

D3 = D4 = . . . = 0

=⇒ D0D0 = 0 D0D1 + D1D0 = 0 D1D1 = −D0D2 − D2D0

D1D2 + D2D1 = 0 D2D2 = 0
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Forgetting the higher structure

The underlying chain complex...

Forget the higher differentials: (M,D•) 7→ (M,D0).

...and its homology complex

The homology H(M) = H(M,D0) is defined degreewise:

Hp,q(M) =
Zp,q(M)

Bp,q(M)
=

kerD0 : Mp,q → Mp,q+1

imD0 : Mp,q−1 → Mp,q

We equip H(M) with the trivial differential.
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Homotopy equivalence

Remark
Over a field, it is always true that (M,D0) ≃ (H(M), 0) as chain
complexes.

In other words, we can always find maps

(M,D0) (H(M), 0).

π

h

ι

with
ιπ − idM = D0h+ hD0 and πι = idH(M) .
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The Homotopy Transfer Theorem (HTT)

Given a homotopy equivalence

(M,D0) (H(M), 0),

π

h

ι

define

D′
r =

∑
i1+i2+···+ik=r

πDi1hDi2h · · · hDik ι for r ⩾ 1.

A special case of the HTT for multicomplexes

(H(M), 0,D′
1,D

′
2, . . .) is a multicomplex.



Slide: 14

Example — The differential D′
3

The transferred differential

D′
3 = π(D1hD1hD1 + D1hD2 + D2hD1 + D3)ι

Mp,q Mp+1,q

Mp+1,q−1 Mp+2,q−1

Mp+2,q−2 Mp+3,q−2

Hp,q(M) Hp+3,q−2(M)

D1

D2
D3

h
D1

D2

h
D1

π

ι

D′
3



Slide: 15

Example - HTT applied to a double complex

If (M,D0,D1) is a double complex over a field, then the multicomplex
(H(M), 0,D′

1,D
′
2, . . .) is a lifted version of the usual spectral

sequence associated to M:

Proposition

The map induced by D′
r on the Er -page is precisely dr (for all r ⩾ 1).
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So far...

• Definition of a multicomplex.
• Some examples.
• The HTT allows us to transfer the higher differentials ofM to
H(M).

• We recover the spectral sequence of a double complex via the
HTT.

Next: The spectral sequence associated to a multicomplex.
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A quick overview

(C•,•,D0,D1) (Tot(C)•,D) (E•(C), d•)

Double
complexes

Filtered
Chain

Complexes
Spectral
sequences

Tot(−) E(−)
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A quick overview

Well-known:
How to compute the spectral sequence associated with a double
complex over a field.

Double
complexes

Filtered
Chain

Complexes
Spectral
sequences

Multi-
complexes

Filtered
Chain

Complexes
Spectral
sequences

Tot(−) E(−)

Tot(−) E(−)

Goal:
Compute the spectral sequence associated with a multicomplex
over a field.
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The total complex

We define the total complex TotM of a multicomplex (M,D•) by

(TotM)n =
⊕

p+q=n

Mp,q

equipped with the differential

D =
∑
r⩾0

Dr : (TotM)n → (TotM)n+1.

(For double complexes: D = D0 + D1)∑
p+q=n

DpDq = 0 for all n ⩾ 0 ⇐⇒ D2 = 0.
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Total complex — Example 1

M =

K K

K K

1

1
1

TotM = 0 K⊕K K⊕K 0D

The differential D = D0 + D1 can be represented by the matrix(
1 1
0 1

)
H(TotM,D) = 0.
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Total complex — Example 2

M =

K K

K K

1

1
1

1

TotM = 0 K⊕K K⊕K 0D

The differential D = D0 + D1 + D2 can be represented by the matrix(
1 1
1 1

)
H(TotM,D) is 1-dimensional in two degrees.
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Filtration on total complex

We define a filtration F on TotM by letting

F a TotMn =
⊕

p+q=n
p⩾a

Mp,q (
Note: F a TotM ⩾ F a+1 TotM

)
.
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Spectral Sequences — Crash Course

• Each Er is a bigraded module, and is
called the r-th page (or Er -page).

• On each page there is a differential dr .
• We pass to the next page by computing
(co)homology:

Er+1
∼= H(Er , dr)

• E∞ is the "limit term".
• One way of getting a spectral sequence is
to have a filtered chain complex (!)
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Spectral sequence associated to a multicomplex

Theorem (Spanier95)

Let (C, F ) be a filtered chain complex with F convergent and bounded
below. Then there is a convergent spectral sequence with

Ep,q
0 = F pCp+q/F p+1Cp+q, Ep,q

1 = Hp+q(F pC/F p+1C)

and E∞ is isomorphic to the associated graded of the induced filtration
on H(C).

Takeaway

We get a spectral sequence from the filtration F on TotM. We call
this the spectral sequence associated with M and denote it by
(E•(M), d•).

(M,D•) 7→ (TotM,D, F ) 7→ (E•(M), d•)
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The first pages

• E0 = M and d0 = D0

• E1 = H(M) and d1 = H(D1) = D′
1

• E2 = H(H(M),D′
1) and d2 = H(D′

2)

Warning

In general, dr is not the map induced by D′
r whenever r ⩾ 3.

Goal
Find a way to compute dr in general.
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Re-indexing the cohomology complex

We construct the multicomplex (1M, 1D•) by setting

1Mp,q := H2p+q,−p(M) and 1Dr := D′
r+1.

Q: How is the spectral sequence associated withM related to the
one associated with 1M?

A: See next slide!



Slide: 29

Re-indexing the cohomology complex

We construct the multicomplex (1M, 1D•) by setting

1Mp,q := H2p+q,−p(M) and 1Dr := D′
r+1.

Q: How is the spectral sequence associated with M related to the
one associated with 1M?

A: See next slide!



Slide: 29

Re-indexing the cohomology complex

We construct the multicomplex (1M, 1D•) by setting

1Mp,q := H2p+q,−p(M) and 1Dr := D′
r+1.

Q: How is the spectral sequence associated with M related to the
one associated with 1M?

A: See next slide!



Slide: 30

Main theorem

Theorem
The spectral sequence associated with 1M is a shifted version of the
spectral sequence associated with M in the sense that

Ep,q
r (1M) = E2p+q,−p

r+1 (M) and 1d r = dr+1 for all r ⩾ 0.

Strategy to proving this:

Use an alternative descriptionOn the spectral sequence associated to
a multicomplex (2019). Muriel Livernet, Sarah Whitehouse,
Stephanie Ziegenhagen. of the spectral sequence in terms of
witnessed cycles and boundaries. This gives a constructive proof.
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Repeating the construction

• We can repeat the previous construction on 1M to get 2M.

• Repeat on 2M to get 3M, and so on...
• This way, we obtain a family of multicomplexes ( sM, sD•)
where

sMp,q := H2p+q,−p( s−1M, s−1D0) and sDr :=
s−1D′

r+1.
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Corollary 1 — Computing differentials

Corollary

We have
Ep,q
r (M) = rMp−rn, q+rn and dr = rD0

for every r ⩾ 1 where n = p+ q.

Proof.
From theorem we have Er(1M) = Er+1(M) for every r ⩾ 0.

rM = E0(rM) = E1(r−1M) = E2(r−2M) = · · · = Er−1(
1M) = Er(M).

Similarly, for the differentials, we get

rD0 =
rd0 = r−1d1 = r−2d2 = · · · = 1d r−1 = dr .
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Relevant literature

• Multicomplexes and the associated spectral sequence:
• De Rham cohomology and homotopy Frobenius manifolds —

Vladimir Dotsenko, Sergey Shadrin, Bruno Vallette (2015)
• Multicomplexes and spectral sequences — David E. Hurtubise

(2009)
• On the spectral sequence associated to a multicomplex — Muriel

Livernet, Sarah Whitehouse, Stephanie Ziegenhagen (2019)
• Conditionally Convergent Spectral Sequences — J. M. Boardman

(1999)
• Other:

• Algebraic Operads — Jean-Louis Loday, Bruno Vallette (2012)
• Model category structures on multicomplexes — Xin Fu, Ai Guan,

Muriel Livernet, Sarah Whitehouse (2021)
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That’s all!

Questions?
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Extra slides
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Corollary 2 — Degeneracy

Corollary

The spectral sequence associated with a multicomplex M degenerates
at the k-th page if and only if kDr = 0 for all r ⩾ 0.

Proof.
The spectral sequence E(M) degenerates at the k-th page ⇐⇒
dr = 0 for all r ⩾ k ⇐⇒ The spectral sequence E(k−1M)
degenerates at the first page ⇐⇒ For all r ⩾ 0, we have
0 = k−1D′

r+1 =
kDr .
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Multicomplexes in the wild (not necessarily over a field)

• Double complexes, of course.
• The spectral sequence of a double complex.
• Resolutions for extensions of groups. (C.T.C. Wall, 1961)
• Resolutions of certain generalised Weyl algebras. (Liyu Liu,
2014 and 2017)
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Remark: The limit term of E•(M)

We get an induced filtration on the total homology:

F pH•(TotM) := im(H•(F p TotM) → H•(TotM))

Convergence, written Ep,q
∞ ⇒ Hp+q(TotM), means that

Ep,q
∞ = grp H

p+q(TotM) =
F pHp+q(TotM)

F p+1Hp+q(TotM)
.

Working over a field, we can read off the total homology:

Hn(TotM) =
⊕

p+q=n

Ep,q
∞ .
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Deformations of chain complexes

Multicomplexes can be identified with (polynomial/power series)
curves in the "space" of chain complexes.
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Homotopy algebras

"Multicomplexes are to double complexes as A∞-algebras are to dg
algebras."

• Double complexes are the dg-modules over the algebra D of
dual numbers.

• Multicomplexes are the dg-modules over the Koszul
resolution D∞ of D.
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Some open (?) questions

• Does every spectral sequence come from a multicomplex?
• Decomposition of multicomplexes into basic building blocks?
• What can we say over more general rings?
• What if we have a multiplicative structure around?
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Why spectral?

Nobody seems to really know:
"What is so "spectral" about spectral sequences?" — MathOverflow

https://mathoverflow.net/questions/17357/what-is-so-spectral-about-spectral-sequences
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Differentials exposed!

Let (π0, ι0, h0) be a homotopy retract of M to 1M = H(M) and
(πi, ιi, hi) be a homotopy retract of iM to i+1M for i ⩾ 1.
• d0 = D0

• d1 = π0D1ι0

• d2 = 2D0 =
1D′

1 = π1
1D1ι1 = π1D′

2ι1 = π1π0(D1h0D1 + D2)ι0ι1
•

d3 = 3D0 =
2D′

1 = π2
2D1ι2 = π2

1D′
2ι2 = π2π1(

1D1h1 1D1 +
1D2)ι1ι2

= π2π1(D′
2h1D

′
2 + D′

3)ι1ι2

= π2π1π0((D1h0D1 + D2)ι0h1π0(D1h0D1 + D2)

+ D1h0D1h0D1 + D1h0D2 + D2h0D1 + D3)ι0ι1ι2

• d4 = exercise.
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