Multicomplexes over a field

Odin Hoff Gardå

Topology Seminar UiB

November 2, 2022

Multicomplexes - Definition

A multicomplex $\left(M, D_{\mathbf{\bullet}}\right)$ (over a field \mathbb{K}) consists of

- A bigraded \mathbb{K}-vector space $\mathcal{M}=\left\{\mathcal{M}^{p, q} \mid p, q \in \mathbb{Z}\right\}$,

Multicomplexes - Definition

A multicomplex $\left(M, D_{\mathbf{\bullet}}\right)$ (over a field \mathbb{K}) consists of

- A bigraded \mathbb{K}-vector space $\mathcal{M}=\left\{\mathcal{M}^{p, q} \mid p, q \in \mathbb{Z}\right\}$,
- and linear maps $D_{0}, D_{1}, D_{2}, D_{3}, \ldots$ where $D_{r}: \mathcal{M}^{p, q} \rightarrow \mathcal{M}^{p+r, q-r+1}$ for all indices (p, q).

Multicomplexes - Definition

A multicomplex $\left(M, D_{\mathbf{\bullet}}\right)$ (over a field \mathbb{K}) consists of

- A bigraded \mathbb{K}-vector space $\mathcal{M}=\left\{\mathcal{M}^{p, q} \mid p, q \in \mathbb{Z}\right\}$,
- and linear maps $D_{0}, D_{1}, D_{2}, D_{3}, \ldots$ where $D_{r}: \mathcal{M}^{p, q} \rightarrow \mathcal{M}^{p+r, q-r+1}$ for all indices (p, q).
In addition, we require

$$
D_{0} D_{n}+D_{1} D_{n-1}+\cdots+D_{n-1} D_{1}+D_{n} D_{0}=0
$$

for all $n \geqslant 0$.

Multicomplexes - Definition

A multicomplex $\left(M, D_{\mathbf{\bullet}}\right)$ (over a field \mathbb{K}) consists of

- A bigraded \mathbb{K}-vector space $M=\left\{M^{p, q} \mid p, q \in \mathbb{Z}\right\}$,
- and linear maps $D_{0}, D_{1}, D_{2}, D_{3}, \ldots$ where $D_{r}: \mathcal{M}^{p, q} \rightarrow \mathcal{M}^{p+r, q-r+1}$ for all indices (p, q).
In addition, we require

$$
D_{0} D_{n}+D_{1} D_{n-1}+\cdots+D_{n-1} D_{1}+D_{n} D_{0}=0
$$

for all $n \geqslant 0$.

More compactly,

$$
\sum_{p+q=n} D_{p} D_{q}=0
$$

Visualising multicomplexes

$$
\begin{array}{llll}
\ldots & \mathcal{M}^{p-1, q+1} & \mathcal{M}^{p, q+1} & \mathcal{M}^{p+1, q+1} \\
\ldots & \mathcal{M}^{p-1, q} & \mathcal{M}^{p, q} & \mathcal{M}^{p+1, q} \\
\cdots & \mathcal{M}^{p-1, q-1} & \mathcal{M}^{p, q-1} & \mathcal{M}^{p+1, q-1}
\end{array}
$$

Visualising multicomplexes: D_{0}

Visualising multicomplexes: D_{1}

Visualising multicomplexes: D_{2}

$$
\begin{array}{lll}
\vdots & \vdots & \vdots
\end{array}
$$

Defining relations

$$
\sum_{p+q=n} D_{p} D_{q}=0
$$

Defining relations

$$
\sum_{p+q=n} D_{p} D_{q}=0
$$

$$
\mathrm{n}=0
$$

$$
D_{0} D_{0}=0
$$

Defining relations

$$
\sum_{p+q=n} D_{p} D_{q}=0
$$

$$
\mathrm{n}=0
$$

$D_{0} D_{0}=0$

$$
D_{1} D_{0}=-D_{0} D_{1}
$$

Defining relations

$$
\sum_{p+q=n} D_{p} D_{q}=0
$$

$\mathrm{n}=0$

$$
\begin{array}{cc}
D_{0} D_{0}=0 & D_{1} D_{0}=-D_{0} D_{1} \\
\bullet & \bullet \xrightarrow{D_{1}} \bullet \\
D_{0} \uparrow & \uparrow D_{0} \quad D_{0} \uparrow \\
\bullet & \bullet \xrightarrow{D_{1}} \uparrow \\
D_{0} \uparrow &
\end{array}
$$

$$
D_{1} D_{1}=-\left(D_{0} D_{2}+D_{2} D_{0}\right)
$$

Example: Chain complex of (graded) vector spaces

Example: Double complex

Example: "Homotopy double complex"

$$
\longrightarrow D_{0}
$$

Forgetting the higher structure

The underlying chain complex...
Forget the higher differentials: $\left(\mathcal{M}, D_{\bullet}\right) \mapsto\left(\mathcal{M}, D_{0}\right)$.

Forgetting the higher structure

The underlying chain complex...

Forget the higher differentials: $\left(\mathcal{M}, D_{\bullet}\right) \mapsto\left(M, D_{0}\right)$.

...and its homology complex

The homology $H(M)=H\left(M, D_{0}\right)$ is defined degreewise:

$$
H^{p, q}(M)=\frac{Z^{p, q}(M)}{B^{p, q}(M)}=\frac{\operatorname{ker} D_{0}: M^{p, q} \rightarrow M^{p, q+1}}{\operatorname{im} D_{0}: M^{p, q-1} \rightarrow M^{p, q}}
$$

We equip $H(M)$ with the trivial differential.

Homotopy equivalence

Remark

Over a field, it is always true that $\left(\mathcal{M}, D_{0}\right) \simeq(H(M), 0)$ as chain complexes.

Homotopy equivalence

Remark

Over a field, it is always true that $\left(M, D_{0}\right) \simeq(H(M), 0)$ as chain complexes.

In other words, we can always find maps

with

$$
\iota \pi-\mathrm{id}_{M}=D_{0} h+h D_{0} \quad \text { and } \pi \iota=\operatorname{id}_{H(M)} .
$$

The Homotopy Transfer Theorem (HTT)

Given a homotopy equivalence

define

$$
D_{r}^{\prime}=\sum_{i_{1}+i_{2}+\cdots+i_{k}=r} \pi D_{i_{1}} h D_{i_{2}} h \cdots h D_{i_{k}} \iota \quad \text { for } r \geqslant 1 .
$$

A special case of the HTT for multicomplexes

$\left(H(M), 0, D_{1}^{\prime}, D_{2}^{\prime}, \ldots\right)$ is a multicomplex.

Example - The differential D_{3}^{\prime}

The transferred differential

$$
D_{3}^{\prime}=\pi\left(D_{1} h D_{1} h D_{1}+D_{1} h D_{2}+D_{2} h D_{1}+D_{3}\right) \iota
$$

Example - HTT applied to a double complex

If $\left(M, D_{0}, D_{1}\right)$ is a double complex over a field, then the multicomplex $\left(H(M), 0, D_{1}^{\prime}, D_{2}^{\prime}, \ldots\right)$ is a lifted version of the usual spectral sequence associated to M :

Proposition

The map induced by D_{r}^{\prime} on the E_{r}-page is precisely d_{r} (for all $r \geqslant 1$).

So far...

- Definition of a multicomplex.
- Some examples.
- The HTT allows us to transfer the higher differentials of M to $H(M)$.
- We recover the spectral sequence of a double complex via the HTT.

So far...

- Definition of a multicomplex.
- Some examples.
- The HTT allows us to transfer the higher differentials of M to $H(M)$.
- We recover the spectral sequence of a double complex via the HTT.

Next: The spectral sequence associated to a multicomplex.

A quick overview

$\left(C^{\bullet \bullet}, D_{0}, D_{1}\right) \longmapsto\left(\operatorname{Tot}(C)^{\bullet}, D\right) \longmapsto\left(E^{\bullet}(C), d_{\bullet}\right)$

A quick overview

A quick overview

$\left(\mathcal{M}^{\bullet \bullet},\left\{D_{r}\right\}_{r \geqslant 0}\right) \longmapsto\left(\operatorname{Tot}(M)^{\bullet}, D^{\prime}\right) \longmapsto\left(E^{\bullet}(M), d_{\bullet}\right)$

A quick overview

Well-known:

How to compute the spectral sequence associated with a double complex over a field.

A quick overview

Well-known:

How to compute the spectral sequence associated with a double complex over a field.

Goal:

Compute the spectral sequence associated with a multicomplex over a field.

The total complex

We define the total complex Tot \mathcal{M} of a multicomplex $\left(\mathcal{M}, D_{\mathbf{0}}\right)$ by

$$
(\operatorname{Tot} M)^{n}=\bigoplus_{p+q=n} \mathcal{M}^{p, q}
$$

equipped with the differential

$$
D=\sum_{r \geqslant 0} D_{r}:(\operatorname{Tot} M)^{n} \rightarrow(\operatorname{Tot} M)^{n+1} .
$$

The total complex

We define the total complex Tot \mathcal{M} of a multicomplex $\left(M, D_{\mathbf{0}}\right)$ by

$$
(\operatorname{Tot} M)^{n}=\bigoplus_{p+q=n} \mathcal{M}^{p, q}
$$

equipped with the differential

$$
D=\sum_{r \geqslant 0} D_{r}:(\operatorname{Tot} M)^{n} \rightarrow(\operatorname{Tot} M)^{n+1} .
$$

(For double complexes: $D=D_{0}+D_{1}$)

The total complex

We define the total complex Tot \mathcal{M} of a multicomplex $\left(M, D_{\mathbf{0}}\right)$ by

$$
(\operatorname{Tot} M)^{n}=\bigoplus_{p+q=n} \mathcal{M}^{p, q}
$$

equipped with the differential

$$
D=\sum_{r \geqslant 0} D_{r}:(\operatorname{Tot} M)^{n} \rightarrow(\operatorname{Tot} M)^{n+1} .
$$

(For double complexes: $D=D_{0}+D_{1}$)

$$
\sum_{p+q=n} D_{p} D_{q}=0 \quad \text { for all } n \geqslant 0 \Longleftrightarrow D^{2}=0
$$

Total complex - Example 1

$$
M=\begin{aligned}
& \mathbb{K} \xrightarrow{1} \underset{\longrightarrow}{\mathbb{K}} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \mathbb{K} \uparrow_{\mathbb{K}} \xrightarrow{1} \mathbb{K} \\
& \mathbb{K}
\end{aligned}
$$

Total complex - Example 1

$$
M=\begin{aligned}
& \mathbb{K} \xrightarrow{1} \underset{\longrightarrow}{\mathbb{K}} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \mathbb{K} \uparrow_{\mathbb{K}} \xrightarrow{l} \mathbb{K} \\
& \mathbb{K}
\end{aligned}
$$

Tot $M=0 \longrightarrow \mathbb{K} \oplus \mathbb{K} \xrightarrow{D} \mathbb{K} \oplus \mathbb{K} \longrightarrow 0$

Total complex - Example 1

$$
\text { Tot } M=0 \longrightarrow \mathbb{K} \oplus \mathbb{K} \xrightarrow{D} \mathbb{K} \oplus \mathbb{K} \longrightarrow 0
$$

The differential $D=D_{0}+D_{1}$ can be represented by the matrix

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

$H(\operatorname{Tot} \mathcal{M}, D)=0$.

$$
\begin{aligned}
& \mathbb{K} \xrightarrow{1} \mathbb{K} \\
& M= \\
& \stackrel{{ }_{1} \uparrow}{\mathbb{K} \xrightarrow{1} \mathbb{K}}
\end{aligned}
$$

Total complex - Example 2

Total complex - Example 2

Tot $M=0 \longrightarrow \mathbb{K} \oplus \mathbb{K} \xrightarrow{D} \mathbb{K} \oplus \mathbb{K} \longrightarrow 0$

Total complex - Example 2

$$
\operatorname{Tot} M=0 \longrightarrow \mathbb{K} \oplus \mathbb{K} \xrightarrow{D} \mathbb{K} \oplus \mathbb{K} \longrightarrow 0
$$

The differential $D=D_{0}+D_{1}+D_{2}$ can be represented by the matrix

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

$H(\operatorname{Tot} M, D)$ is 1-dimensional in two degrees.

Filtration on total complex

We define a filtration F on Tot M by letting

$$
F^{a} \text { Tot } \mathcal{M}^{n}=\bigoplus_{\substack{p+q=n \\ p \geqslant a}} \mathcal{M}^{p, q} \quad\left(\text { Note: } F^{a} \text { Tot } \mathcal{M} \geqslant F^{a+1} \operatorname{Tot} \mathcal{M}\right) .
$$

Filtration on total complex

We define a filtration F on Tot M by letting

$$
F^{a} \text { Tot } \mathcal{M}^{n}=\bigoplus_{\substack{p+q=n \\ p \geqslant a}} \mathcal{M}^{p, q} \quad\left(\text { Note: } F^{a} \text { Tot } \mathcal{M} \geqslant F^{a+1} \operatorname{Tot} \mathcal{M}\right) .
$$

Spectral Sequences - Crash Course

Spectral Sequences - Crash Course

- Each E_{r} is a bigraded module, and is called the r-th page (or E_{r}-page).

Spectral Sequences - Crash Course

- Each E_{r} is a bigraded module, and is called the r-th page (or E_{r}-page).

- On each page there is a differential d_{r}.

Spectral Sequences - Crash Course

- Each E_{r} is a bigraded module, and is called the r-th page (or E_{r}-page).

- On each page there is a differential d_{r}.
- We pass to the next page by computing (co)homology:

$$
E_{r+1} \cong H\left(E_{r}, d_{r}\right)
$$

Spectral Sequences - Crash Course

- Each E_{r} is a bigraded module, and is called the r-th page (or E_{r}-page).

- On each page there is a differential d_{r}.
- We pass to the next page by computing (co)homology:

$$
E_{r+1} \cong H\left(E_{r}, d_{r}\right)
$$

- E_{∞} is the "limit term".

Spectral Sequences - Crash Course

- Each E_{r} is a bigraded module, and is called the r-th page (or E_{r}-page).

- On each page there is a differential d_{r}.
- We pass to the next page by computing (co)homology:

$$
E_{r+1} \cong H\left(E_{r}, d_{r}\right)
$$

- E_{∞} is the "limit term".
- One way of getting a spectral sequence is to have a filtered chain complex (!)

Spectral sequence associated to a multicomplex

Theorem (Spanier95)

Let (C, F) be a filtered chain complex with F convergent and bounded below. Then there is a convergent spectral sequence with

$$
E_{0}^{p, q}=F^{p} C^{p+q} / F^{p+1} C^{p+q}, \quad E_{1}^{p, q}=H^{p+q}\left(F^{p} C / F^{p+1} C\right)
$$

and E_{∞} is isomorphic to the associated graded of the induced filtration on $H(C)$.

Spectral sequence associated to a multicomplex

Theorem (Spanier95)

Let (C, F) be a filtered chain complex with F convergent and bounded below. Then there is a convergent spectral sequence with

$$
E_{0}^{p, q}=F^{p} C^{p+q} / F^{p+1} C^{p+q}, \quad E_{1}^{p, q}=H^{p+q}\left(F^{p} C / F^{p+1} C\right)
$$

and E_{∞} is isomorphic to the associated graded of the induced filtration on $H(C)$.

Takeaway

We get a spectral sequence from the filtration F on Tot \mathcal{M}. We call this the spectral sequence associated with M and denote it by ($\left.E_{\bullet}(M), d_{\bullet}\right)$.

$$
\left(M, D_{\bullet}\right) \mapsto(\operatorname{Tot} M, D, F) \mapsto\left(E_{\bullet}(M), d_{\bullet}\right)
$$

The first pages

- $E_{0}=M$ and $d_{0}=D_{0}$

The first pages

- $E_{0}=M$ and $d_{0}=D_{0}$
- $E_{1}=H(M)$ and $d_{1}=H\left(D_{1}\right)=D_{1}^{\prime}$

The first pages

- $E_{0}=M$ and $d_{0}=D_{0}$
- $E_{1}=H(M)$ and $d_{1}=H\left(D_{1}\right)=D_{1}^{\prime}$
- $E_{2}=H\left(H(M), D_{1}^{\prime}\right)$ and $d_{2}=H\left(D_{2}^{\prime}\right)$

The first pages

- $E_{0}=M$ and $d_{0}=D_{0}$
- $E_{1}=H(M)$ and $d_{1}=H\left(D_{1}\right)=D_{1}^{\prime}$
- $E_{2}=H\left(H(M), D_{1}^{\prime}\right)$ and $d_{2}=H\left(D_{2}^{\prime}\right)$

Warning

In general, d_{r} is not the map induced by D_{r}^{\prime} whenever $r \geqslant 3$.

The first pages

- $E_{0}=M$ and $d_{0}=D_{0}$
- $E_{1}=H(M)$ and $d_{1}=H\left(D_{1}\right)=D_{1}^{\prime}$
- $E_{2}=H\left(H(M), D_{1}^{\prime}\right)$ and $d_{2}=H\left(D_{2}^{\prime}\right)$

Warning

In general, d_{r} is not the map induced by D_{r}^{\prime} whenever $r \geqslant 3$.

Goal

Find a way to compute d_{r} in general.

Re-indexing the cohomology complex

We construct the multicomplex $\left({ }^{1} \mathcal{M},{ }^{1} D_{\mathbf{0}}\right)$ by setting

$$
{ }^{1} \mathcal{M}^{p, q}:=H^{2 p+q,-p}(\mathcal{M}) \quad \text { and } \quad{ }^{1} D_{r}:=D_{r+1}^{\prime} .
$$

Re-indexing the cohomology complex

We construct the multicomplex $\left({ }^{1} \mathcal{M},{ }^{1} D_{\mathbf{0}}\right)$ by setting

$$
{ }^{1} \mathcal{M}^{p, q}:=H^{2 p+q,-p}(\mathcal{M}) \quad \text { and } \quad{ }^{1} D_{r}:=D_{r+1}^{\prime} .
$$

Q: How is the spectral sequence associated with M related to the one associated with ${ }^{1} M$?

Re-indexing the cohomology complex

We construct the multicomplex $\left({ }^{1} \mathcal{M},{ }^{1} D_{\mathbf{0}}\right)$ by setting

$$
{ }^{1} \mathcal{M}^{p, q}:=H^{2 p+q,-p}(\mathcal{M}) \quad \text { and } \quad{ }^{1} D_{r}:=D_{r+1}^{\prime} .
$$

Q: How is the spectral sequence associated with M related to the one associated with ${ }^{1} M$?

A: See next slide!

Main theorem

Theorem

The spectral sequence associated with ${ }^{1} \mathrm{M}$ is a shifted version of the spectral sequence associated with M in the sense that

$$
E_{r}^{p, q}\left({ }^{1} \mathcal{M}\right)=E_{r+1}^{2 p+q,-p}(\mathcal{M}) \quad \text { and } \quad{ }^{1} d_{r}=d_{r+1} \quad \text { for all } \quad r \geqslant 0 .
$$

Main theorem

Theorem

The spectral sequence associated with ${ }^{1} \mathrm{M}$ is a shifted version of the spectral sequence associated with M in the sense that

$$
E_{r}^{p, q}\left({ }^{1} \mathcal{M}\right)=E_{r+1}^{2 p+q,-p}(\mathcal{M}) \quad \text { and } \quad{ }^{1} d_{r}=d_{r+1} \quad \text { for all } \quad r \geqslant 0 .
$$

Strategy to proving this:

Use an alternative description ${ }^{1}$ of the spectral sequence in terms of witnessed cycles and boundaries. This gives a constructive proof.
${ }^{1}$ On the spectral sequence associated to a multicomplex (2019). Muriel Livernet, Sarah Whitehouse, Stephanie Ziegenhagen.

Repeating the construction

- We can repeat the previous construction on ${ }^{1} \mathcal{M}$ to get ${ }^{2} \mathcal{M}$.

Repeating the construction

- We can repeat the previous construction on ${ }^{1} \mathcal{M}$ to get ${ }^{2} \mathcal{M}$.
- Repeat on ${ }^{2} \mathcal{M}$ to get ${ }^{3} \mathcal{M}$, and so on...

Repeating the construction

- We can repeat the previous construction on ${ }^{1} \mathcal{M}$ to get ${ }^{2} \mathcal{M}$.
- Repeat on ${ }^{2} \mathcal{M}$ to get ${ }^{3} \mathcal{M}$, and so on...
- This way, we obtain a family of multicomplexes $\left({ }^{s} M,{ }^{s} D_{\bullet}\right)$ where

$$
{ }^{s} \mathcal{M}^{p, q}:=H^{2 p+q,-p}\left({ }^{s-1} M,{ }^{s-1} D_{0}\right) \quad \text { and } \quad{ }^{s} D_{r}:={ }^{s-1} D_{r+1}^{\prime}
$$

Corollary 1 - Computing differentials

Corollary

We have

$$
E_{r}^{p, q}(\mathcal{M})={ }^{r} \mathcal{M}^{p-r n, q+r n} \quad \text { and } \quad d_{r}={ }^{r} D_{0}
$$

for every $r \geqslant 1$ where $n=p+q$.

Corollary 1 - Computing differentials

Corollary

We have

$$
E_{r}^{p, q}(\mathcal{M})={ }^{r} \mathcal{M}^{p-r n, q+r n} \quad \text { and } \quad d_{r}={ }^{r} D_{0}
$$

for every $r \geqslant 1$ where $n=p+q$.

Proof.

From theorem we have $E_{r}\left({ }^{1} M\right)=E_{r+1}(M)$ for every $r \geqslant 0$.

$$
{ }^{r} \mathcal{M}=E_{0}\left({ }^{r} \mathcal{M}\right)=E_{1}\left({ }^{r-1} \mathcal{M}\right)=E_{2}\left({ }^{r-2} \mathcal{M}\right)=\cdots=E_{r-1}\left({ }^{1} \mathcal{M}\right)=E_{r}(\mathcal{M}) .
$$

Corollary 1 - Computing differentials

Corollary

We have

$$
E_{r}^{p, q}(\mathcal{M})={ }^{r} \mathcal{M}^{p-r n, q+r n} \quad \text { and } \quad d_{r}={ }^{r} D_{0}
$$

for every $r \geqslant 1$ where $n=p+q$.

Proof.

From theorem we have $E_{r}\left({ }^{1} M\right)=E_{r+1}(M)$ for every $r \geqslant 0$.

$$
{ }^{r} \mathcal{M}=E_{0}\left({ }^{r} \mathcal{M}\right)=E_{1}\left({ }^{r-1} \mathcal{M}\right)=E_{2}\left({ }^{r-2} \mathcal{M}\right)=\cdots=E_{r-1}\left({ }^{1} \mathcal{M}\right)=E_{r}(\mathcal{M}) .
$$

Similarly, for the differentials, we get

$$
{ }^{r} D_{0}={ }^{r} d_{0}={ }^{r-1} d_{1}={ }^{r-2} d_{2}=\cdots={ }^{1} d_{r-1}=d_{r}
$$

Relevant literature

- Multicomplexes and the associated spectral sequence:
- De Rham cohomology and homotopy Frobenius manifolds Vladimir Dotsenko, Sergey Shadrin, Bruno Vallette (2015)
- Multicomplexes and spectral sequences - David E. Hurtubise (2009)
- On the spectral sequence associated to a multicomplex - Muriel Livernet, Sarah Whitehouse, Stephanie Ziegenhagen (2019)
- Conditionally Convergent Spectral Sequences - J. M. Boardman (1999)
- Other:
- Algebraic Operads - Jean-Louis Loday, Bruno Vallette (2012)
- Model category structures on multicomplexes - Xin Fu, Ai Guan, Muriel Livernet, Sarah Whitehouse (2021)

That's all!

Questions?

Extra slides

Corollary 2 - Degeneracy

Corollary

The spectral sequence associated with a multicomplex \mathcal{M} degenerates at the k-th page if and only if $D_{r}=0$ for all $r \geqslant 0$.

Corollary 2 - Degeneracy

Corollary

The spectral sequence associated with a multicomplex \mathcal{M} degenerates at the k-th page if and only if $D_{r}=0$ for all $r \geqslant 0$.

Proof.

The spectral sequence $E(M)$ degenerates at the k-th page \qquad $d_{r}=0$ for all $r \geqslant k$

Corollary 2 - Degeneracy

Corollary

The spectral sequence associated with a multicomplex \mathcal{M} degenerates at the k-th page if and only if ${ }^{k} D_{r}=0$ for all $r \geqslant 0$.

Proof.

The spectral sequence $E(M)$ degenerates at the k-th page \qquad $d_{r}=0$ for all $r \geqslant k \Longleftrightarrow$ The spectral sequence $E\left({ }^{k-1} M\right)$ degenerates at the first page

Corollary 2 - Degeneracy

Corollary

The spectral sequence associated with a multicomplex \mathcal{M} degenerates at the k-th page if and only if $D_{r}=0$ for all $r \geqslant 0$.

Proof.

The spectral sequence $E(M)$ degenerates at the k-th page \qquad $d_{r}=0$ for all $r \geqslant k \Longleftrightarrow$ The spectral sequence $E\left({ }^{k-1} M\right)$ degenerates at the first page \Longleftrightarrow For all $r \geqslant 0$, we have $0={ }^{k-1} D_{r+1}^{\prime}={ }^{k} D_{r}$.

Multicomplexes in the wild (not necessarily over a field)

- Double complexes, of course.
- The spectral sequence of a double complex.
- Resolutions for extensions of groups. (C.T.C. Wall, 1961)
- Resolutions of certain generalised Weyl algebras. (Liyu Liu, 2014 and 2017)

Remark: The limit term of $E_{\mathbf{0}}(M)$

We get an induced filtration on the total homology:

$$
F^{p} H^{\bullet}(\operatorname{Tot} M):=\operatorname{im}\left(H^{\bullet}\left(F^{p} \operatorname{Tot} M\right) \rightarrow H^{\bullet}(\operatorname{Tot} M)\right)
$$

Convergence, written $E_{\infty}^{p, q} \Rightarrow H^{p+q}(\operatorname{Tot} M)$, means that

$$
E_{\infty}^{p, q}=\operatorname{gr}_{p} H^{p+q}(\operatorname{Tot} M)=\frac{F^{p} H^{p+q}(\operatorname{Tot} M)}{F^{p+1} H^{p+q}(\operatorname{Tot} M)}
$$

Working over a field, we can read off the total homology:

$$
H^{n}(\operatorname{Tot} M)=\bigoplus_{p+q=n} E_{\infty}^{p, q}
$$

Deformations of chain complexes

Multicomplexes can be identified with (polynomial/power series) curves in the "space" of chain complexes.

Homotopy algebras

"Multicomplexes are to double complexes as A_{∞}-algebras are to dg algebras."

- Double complexes are the dg-modules over the algebra D of dual numbers.
- Multicomplexes are the dg-modules over the Koszul resolution D_{∞} of D.

Some open (?) questions

- Does every spectral sequence come from a multicomplex?
- Decomposition of multicomplexes into basic building blocks?
- What can we say over more general rings?
- What if we have a multiplicative structure around?

Why spectral?

Why spectral?

Nobody seems to really know:
"What is so "spectral" about spectral sequences?" - MathOverflow

Differentials exposed!

Let $\left(\pi_{0}, \iota_{0}, h_{0}\right)$ be a homotopy retract of \mathcal{M} to ${ }^{1} \mathcal{M}=H(\mathcal{M})$ and $\left(\pi_{i}, \iota_{i}, h_{i}\right)$ be a homotopy retract of ${ }^{i} \mathcal{M}$ to ${ }^{i+1} \mathcal{M}$ for $i \geqslant 1$.

- $d_{0}=D_{0}$
- $d_{1}=\pi_{0} D_{1} \iota_{0}$
- $d_{2}={ }^{2} D_{0}={ }^{1} D_{1}^{\prime}=\pi_{1}{ }^{1} D_{1} \iota_{1}=\pi_{1} D_{2}^{\prime} \iota_{1}=\pi_{1} \pi_{0}\left(D_{1} h_{0} D_{1}+D_{2}\right) \iota_{0} \iota_{1}$

$$
\begin{aligned}
d_{3}= & { }^{3} D_{0}={ }^{2} D_{1}^{\prime}=\pi_{2}{ }^{2} D_{1} \iota_{2}=\pi_{2}{ }^{1} D_{2}^{\prime} \iota_{2}=\pi_{2} \pi_{1}\left({ }^{1} D_{1} h_{1}{ }^{1} D_{1}+{ }^{1} D_{2}\right) \iota_{1} \iota_{2} \\
= & \pi_{2} \pi_{1}\left(D_{2}^{\prime} h_{1} D_{2}^{\prime}+D_{3}^{\prime}\right) \iota_{1} \iota_{2} \\
= & \pi_{2} \pi_{1} \pi_{0}\left(\left(D_{1} h_{0} D_{1}+D_{2}\right) \iota_{0} h_{1} \pi_{0}\left(D_{1} h_{0} D_{1}+D_{2}\right)\right. \\
& \left.\quad+D_{1} h_{0} D_{1} h_{0} D_{1}+D_{1} h_{0} D_{2}+D_{2} h_{0} D_{1}+D_{3}\right) \iota_{0} \iota_{1} \iota_{2}
\end{aligned}
$$

- $d_{4}=$ exercise.

