Rotation Invariant Learning on Contours Plankton Workshop – IMR

Odin Hoff Gardå

PhD Student @ UiB

June 3, 2025

Rotation Invariance Visualized

Rotation Equivariance Visualized

Geometric Priors

?

 train

learn

Geometric Priors

You already use them!

Example: CNNs (Translation Equivariance)

Let f be a convolutional layer.

Example: CNNs (Translation Invariance)

Let F be a "fully convolutional" neural network.

What About Rotations?

 $\operatorname{conv}(\operatorname{rot}(x)) \neq \operatorname{rot}(\operatorname{conv}(x))$

Contours as Shape Representations

A **contour** is a sequence of points in the plane that represents the boundary of a shape.

The Complex Plane $\mathbb C$

- ightharpoonup Complex numbers = points in the plane + multiplication.
- ▶ Rotation is multiplication with unit complex numbers.

Contours as Complex Numbers

$$\mathbb{R}^2 \cong \mathbb{C}$$

- ▶ A **contour** is a sequence $(z_1, ..., z_n)$ of complex numbers.
- ▶ Or a function $x: [n] \to \mathbb{C}$, where $[n] = \{1, \ldots, n\}$.
- ▶ A stack of k contours is a function $x: [n] \to \mathbb{C}^k$.

Write \mathcal{X}_n^k for the collection of all functions $x : [n] \to \mathbb{C}^k$.

Complex-valued 1D Convolution

For a filter $\phi \in \mathcal{X}_m^k$ define *circular convolution* as

$$\operatorname{conv}_{\phi} \colon \mathcal{X}_n^k \to \mathcal{X}_n^1$$

 $x \mapsto \phi \star x$

where $\phi \star x$ is 1D convolution of ϕ along x in the complex domain.

Equivariance: $\operatorname{conv}_{\phi}$ is equivariant with respect to rotations and choice of starting point.

Activation Functions

A function $f: \mathbb{C} \to \mathbb{C}$ is rotation equivariant if and only if f(z) = g(|z|)z for some $g: [0, \infty) \to \mathbb{C}$.

Examples:

- ► Siglog: $(|z|+1)^{-1}z$.
- ▶ Amplitude-phase-type: $\tanh(|z|)z|z|^{-1}$.
- ▶ ModReLU: ReLU(|z| + b) $z|z|^{-1}$ with learnable $b \in \mathbb{R}$.

Local Spatial Pooling (Coarsening)

Reduce the number of points.

Global Pooling (Invariant Layer)

Rotation invariant function $\mathcal{X}_n^k \to \mathbb{R}^k$.

For example, any function depending only on radii such as mean or max, or a learnable function.

Plankton Classification Dataset

 $5~classes~from~{\tt Mesozooplankton} {\rightarrow} {\tt Animalia} {\rightarrow} {\tt Arthropoda} \\ {\rightarrow} {\tt Crustacea} {\rightarrow} {\tt Copepoda} {\rightarrow} {\tt Calanoida}.$

Class	#
Temoridae/Temora/Temora spp	257
Metridinidae/Metridia_late	271
Clausocalanidae/Microcalanus_late	421
Centropagidae/Centropages_late	345
Calanidae/Calanus_late	644
Total	1938

Split 50/50 stratified. Image size 64×64 , contour length 128.

Plankton Results

\mathbf{Model}	Accuracy (test)	# Params
CNN	0.642 ± 0.022	≈114k
CNN+Aug	0.896 ± 0.004	$\approx 114 \mathrm{k}$
\mathbf{Ours}	0.879 ± 0.008	$\approx 100 \mathrm{k}$
$_{ m Ours+RH}$	0.905 ± 0.012	$\approx 101 \mathrm{k}$

Table: Classification metrics on dataset. Average over 10 runs.

- ▶ CNN Standard CNN on gray-scale images. With and without rotation augmentation.
- ▶ Ours Complex-valued 1d convolutions and global pooling.
- ▶ Ours+RH With a simple rotation-invariant texture descriptor (radial histogram).

Fashion MNIST Contours

Contours based on the Fashion MNIST dataset.

\mathbf{Model}	Accuracy	# Params
CNN+Aug	0.860 ± 0.001	≈294k
\mathbf{Ours}	0.878 ± 0.001	$pprox 77 \mathrm{k}$

Table: Performance on Fashion MNIST. Average over 30 runs.

The End

Questions?